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KINETIC EQUATION FOR AN OSCILLATOR IN A RANDOM EXTERNAL FIELD 
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An analysis is given of the behavior of an oscillator in an external 
random field, assuming that the time of interaction is much longer 
than the period of the oscillator. The kinetic equation describing the 
coordinate and velocity distribution as functions of time is derived. 
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Fig. 1 

The problem is analogous to the motion of a charged particle in an 
external magnetic field in the presence of collisions. 

A well-known situation in the theory of interaction of plasma par- 
ticles with the wave field due to instability is the possibility of con- 
sidering the motion of an individual particle as if it were taking place 
in a given random field. If in addition there is an external magnetic 
field, the motion of the particle is analogous tothe motion of an oscil- 
later in a random force field. Random forces acting on the oscillator can 
be imagined as a sequence of pulses with a known random distribution 
of pulse heights and inter,~als between pulses. Depending on the pulse 
length r (the time of "collision" 7 and the period w of the oscillator, 
there are two possible limiting cases, namely: 1) wr << 1 and 2) cur >> 
>> 1. The first case has been investigated in sufficient detail. In this 
paper we consider the second case in the approximation where the 
mean interval between pulses is much greater than r (infrequent "col- 
lisions"). 

The basic equation describing the motion of the oscillator will be 

x " +  [m=+ F(t)]  x = O, (I) 

where F(t) is a sequence of sufficiently smooth pulses (the effect of a 
pulse on a particle will be referred to as a collision) with a known 
random distribution of pulse shapes and intervals between pulse (Fig. 
1). 

The condition 

m'r >>- i (2) 

enables us to write out the solution of Eq. (1) in the WKB approxima- 
tion [I] 

x = Ax+ + Bx_, 

t 

x• }, fa= }l'o'+F(t). (87 

In the interval between collisions f~ ~ w, and the solution given by 
Eq. (3) represents ordinary oscillations. A collision leads to a change 
in the adiabatic invariant (E is the energy of the oscillator): 

I = EI~. (4) 

This is analogous to reflection from a barrier in quantum mechanics. 
Consider the complex t plane. The asymptotic solutions Eq. (3) are 
of the form shown in Fig. 2. It is assumed that the nearest singular 
points to the real axis are t k, ik (bars represent complex conjugates) 
at which 9,2(t) has a simple zero 

P.u (t) = r (t) H (t - -  tk) (t - -  tk)(5), (5) 
k 

where ?(t) has singularities or zeros at points with imaginary parts much 
greater than I m t  k. The change in the adiabatic invariant subject to 
the condition given by Eq. (5) occurs when a sufficiently narrow region 
near the points O k is intersected (Fig. 2). It was calculated in [2]. 

Let us introduce the translation operator T~n 

x (t + Tn) = Tn+x (t), (67 

where T n is the interval between On+ 1 and On, and the time t lies in 
the interval (On_ i, On). We shall take the operator T + in the form given 
in [3] : 

Tn+= ( V t  q- e -2$~ei('l'z+sn+Tn) e-~n-i('f'r~-sn) ) ,  (7 7 
\e  Sn+~( h= s n) ~/-1 + e -2s~ e ~(/'n+Sn+~n) 

t n tn+  1 

~ n = - - i  I 9.(ff) d t '>O,  Sn= f f~(t ' )dt '>O, (87 

The operator T + will then act on the column vector with compo- 

nents Anx+, BnX_. The order of magnitude on the phase en in Eq. (7) 
is uotgreates than unity, and its exact form will not be necessary below. + 
The operator T n is given by 

T n + = ( ;  ba), ' a ' S - - l b p = t .  (97 

It will be convenient to take x in a real form, i. e.,  B = 32. It fol- 
lows from Eq. (8) that if B n = •n then Bn+ 1 = An+~- Hence, according 
to Eq. (4), 

& = I A~ I ~ . ( io)  

Let us now take into account the fact that the collisions are infrequent. 

We have 

S n '~m T n>~.l , (117 

and the translation operator assumes the form 

( Tn/r  = ] f  i - ~ - ~ n  2 e i~T n 8n e 
' 

t -8 
8 n ~ e  n . 

t .  
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(12) 

Consider the equation 

r + E = o, 
L 

whose solution in the interval (t~i_l, t'n) will be written in the 
form 

(t) = A~%+ + ]n*~-, 4+ = e+-i~ (147 

The translation operator Tn + will be defined by analogy with Eq. 
(6): 

(t + Tn*)= Tn+* ~ (t) (Tn =tn+ 1 - t  n ) �9 (15) 
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We then have 

T n  + *  = 

i(r *+eaTn* V' t  + ~/aun ~/o~ e n 
= 

Un i(~hn+CaTn* ) \ ~ e  ~, 
e-i(q~n*+COTn*)~ 

%~* = arc t g (un /2 (o ) .  

If we compare Eqs. (12) and (16) and take Eq. (11) into account, 
we see that the initial equation given by Eq. (1) can be replaced by 
Eqs. (12) if we make the substitutions 

4 = 1/'~-x, er, = Un / 20), Tn* = T n . (17) 

Let us now derive the kinetic equation. Let f (g ,7 ,  t )be  the proba- 
bility density that at a time t the variable g lies in the range (g, g + 
+ dg), and the variable ~/ = ~" lies in the range (~,~/ + d~/), where 

S ! ( 4 ,  ~], t ) d 4 d n =  1. 

The points t~ in Eq. (13) will be assumed to be distributed in ac- 
cordance with Poisson's law, i. e. ,  the probability that the interval be- 
tween t~ and t~+~ lies in the range (T, T + dT) is given by 

P (T) dT = k e -KT d T .  (18) 

We will also assume that the probability density w(e) that s n (for 
any n) lies in the range is, e + de) is known. The equation for f (G 77,t) 
in the case of Eq. (13) was discussed in [4]. We shall give it without 

proof: 
O/(L~], t) ~ O 

at --  ((~176 b~l - -  rl ~ ) ] (%' rl' t) + 

a_ L f ds'w(s') f (4 ' n '7 o,)e%, t ) - -  k /  (~, ~], t) . (19) 

In particular, if 

we have 

w (~') = l / n 6  (~' - -  ~), 

+ ~ [1 (4, n + o~s4, t) - -  r (4, n, t)] (20) 

For large 6, i. e., very small s, we have from gq. (20) the Fokker- 

Planck equation 

3 T  ~ (c~ + *Z~ ~ ~ - -  ~1 3~-~ + 7. a ~  , (21) 

with the coefficient of diffusion given by 

D ~ ~ / ~ e ~  ~ . (22) 

d 
d-T O12> = 7.e~r~ <F'~) - -  2 ( o  2 q- 7.eo)) @~1)-  (24 )  

The solution of Eq. (24) is proportional to e Ft ,  where F represents 
the roots of the equation 

r '3 -]- 4 (a) 2 -t- 7.~r r - -  2~s~a) 2 = 0 .  (25)  

The last equation always has one unstable root F 0 > 0, and in our 
c a s e  

F0 ~ 1/~ a2;~ = :/8 7.e - ~ .  (2~) 

Therefore, the characteristic time for the development of instability 
is sufficiently long: 

"~R ~ 8e2~, -I  �9 (27) 

In accordance with Eq. (19), all the second moments are propor- 
tional to I, and their average increase with time means that the quan- 
tity <I> = <gz + ~z/f~z > will also increase. 

It is occasionally convenient to rewrite Eq. (19) in terms of action- 

phase variables. Let 

x = l ( - ~ ,  z = n / 0 4 .  (28) 

Equation (19) then assumes the form 

where 

OF (I, z) O 
ot - (o -61- [ ( t  + z~) e ( I ,  z)l  + 

+ 7.{F(X*, * O(t*,  z*) z ) ~ - - F ( L  z ) } ,  

1 ~ - - ~ "  '] ' ~ * = ~ + - J - '  

(29) 

F (z, z) dZdz = ! (~, ~1) d 4 @ .  (30) 

If we integrate Eq. (29) with respect to I we obtain the kinetic 
equation for the phases (more precisely, for the cotan of the phase z). 

However, the kinetic equation for 

F ( I ) =  ~ F ( I ,  z) dz 
-co 

alone cannot be obtained. 

The above method of deriving the kinetic equation can also 
be applied to more complicated systems. The method requixes 
a knowledge of the translation operator T + in the WKB approxi- 

mation. 
The author is grateful to R. Z. Sagdeev for his useful advice. 

According to Eq. (12), the quantity s is exponentially small and, 

consequently, the coefficient of diffusion is also small. We shall see 
below that the second moments o f f  which, in view of Eqs. (10) and 
(17), are proportional to the adiabatic invariant I for the oscillator, 
increase with time. This ensures that Eq. (21) eventually becomes 
invalid. The condition for the validity of this equation is 

"~  40 = ~'~ In / . (23)  

Let us now introduce the second moments of the distribution func- 
tion f: <32 >, <g~7>, <~z >, where the angle brackets represent 

averaging over the distribution f(g, ~,t). The equations for these mo- 
ments are given in [4] and are readily derived from Eq. (20). They 

are given by 
d 

-gi- (~2) = 2 <r  

d 
d~- (~@ = -- ((o2 q- Leo) Ks 2) + (~1~), 
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